SLIP-INDUCED DIRECTIONAL ORDER THEORY FOR B2-type superlattices

Fig. 6. Same as Fig. 5, except that emphasis is on *next-nearest-neighbor* pairs. (a) Undeformed state; all three $\langle 100 \rangle$ NNN directions contain AA and BB pairs only. (b) to (d) Alternative arrangements after ($\overline{1}12$) [$1\overline{1}1$] slip, showing AB pairs (double bars) induced in all three $\langle 100 \rangle$ directions.

Since ΔN_{BB} occurs in [111], [$\overline{1}$ 11] and [11 $\overline{1}$], we have from eqn. (1)

$$\cos^2 \varphi = (\cos^2 \varphi_{[111]} + \cos^2 \varphi_{[\overline{1}11]} + \cos^2 \varphi_{[\overline{1}11]})$$
$$= -\frac{2}{3}(\alpha_1 \alpha_2 - \alpha_2 \alpha_3 + \alpha_3 \alpha_1), \qquad (15)$$

which means that the $[1\overline{1}1]$ slip direction is the effective direction of unlike pairs, which is a hard direction of magnetization for FeCo. In the general case, where the slip direction of slip system *i* has the direction cosines d_{1i} , d_{2i} , d_{3i} ,

$$\cos^2 \varphi_i = -2(d_{1i}d_{2i}\alpha_1\alpha_2 + d_{2i}d_{3i}\alpha_2\alpha_3 + d_{3i}d_{1i}\alpha_3\alpha_1)$$
$$\equiv -2f_i(\alpha_1, \alpha_2, \alpha_3).$$
(16)

The insertion of eqns. (14) and (16) into eqn. (1) then leads to

$$E = -\frac{1}{2}Nlp_0 p's^2 \sum_i |S_i| f_i(\alpha_1, \alpha_2, \alpha_3).$$
(17)

(b) Short-range order case

For the short-range order case, the two nearestneighbor bonds associated with each $\langle 111 \rangle$ direction (in a unit cell) contain a total of $(1-\sigma)/2$ BB pairs in the undeformed state (see Appendix). After slip, $\sigma = 0$ for the $3\langle 111 \rangle$ directions other than the slip direction. Hence the gain in BB pairs in each of these directions is $\sigma/2$, or $\sigma/2a^2\sqrt{6}$ per

Mater. Sci. Eng., 1 (1966) 77-90

C	V	CLIIN	
u.	1.	CHIN	

No. of slip system	Slip plane	Slip direction	2e _{xx}	$2\varepsilon_{yy}$	2ε _{zz}	$4\epsilon_{yz}$	4e _{zx}	4ε _{xy}	3 <i>d</i> ₁ <i>d</i> ₂	3d ₂ d ₃	3 <i>d</i> ₃ <i>d</i> ₁
1	(112)	111	S ₁	<i>S</i> ₁	$-2S_{1}$	$-S_1$	$-S_1$	2S ₁	1	1	1
2	$(1\overline{2}1)$	111	S2	$-2S_{2}$	S2	$-S_2$	$2S_2$	$-S_2$	1	1	1
3	(211)	111	$-2S_{3}$	S ₃	S3	$2S_3$	$-S_3$	$-S_3$	1	1	1
4	(112)	111	S4	S4	$-2S_{4}$	S ₄	S4	$2S_4$	1	-1	-1
5	(121)	111	$-S_{5}$	2S5	$-S_5$	$-S_{5}$	2S5	S ₅	1	-1	-1
6	(211)	111	2S6	$-S_{6}$	$-S_6$	$2S_6$	$-S_6$	S ₆	1	-1	-1
7	(112)	Ī11	$-S_7$	$-S_{7}$	$2S_7$	S ₇	$-S_7$	2S ₇	-1	1	-1
8	(211)	Ī11	$-2S_{8}$	S ₈	S ₈	$2S_8$	S ₈	S ₈	-1	1	-1
9	(121)	Ī11	$-S_9$	$2S_9$	$-S_9$	So	2S9	$-S_9$	-1	1	-1
10	(211)	111	$2S_{10}$	$-S_{10}$	$-S_{10}$	$2S_{10}$	S10	$-S_{10}$	-1	-1	1
11	(121)	111	S11	$-2S_{11}$	S ₁₁	S11	$2S_{11}$	S11	-1	-1	1
12	(112)	111	$-S_{12}$	$-S_{12}$	2S ₁₂	$-S_{12}$	S ₁₂	2S ₁₂	-1	-1	1

TABLE III: VALUES OF ε and d (referred to cubic axes) for the twelve {112} (111) slip systems

TABLE IV: SUMMARY OF RESULTS BASED ON $\{112\}$ $\langle 111 \rangle$ slip

Rolling plane	Rolling direction	Active slip systems	<i>S</i> _{<i>i</i>}	E _{NN}	Easy* axis
(001)	[110]	7,12	r/2	$\left(\frac{E_1 r}{6}\right) \alpha_1 \alpha_2$	TD
(115)	[110]	4,7,8,11,12	$ S_4 = 2r/27$	$\left(\frac{E_1r}{162}\right)(31\alpha_1\alpha_2+2\alpha_2\alpha_3+2\alpha_3\alpha_1)$	TD
			$ S_8 = S_{11} = 6r/27$ $ S_7 = S_{12} = 21r/54$	(102)	
(112)	[110]	4,7,8,11,12	r/3	$\left(\frac{E_1r}{18}\right)(3\alpha_1\alpha_2+\alpha_2\alpha_3+\alpha_3\alpha_1)$	RPN
(111)	[110]	4,7,8,11,12	$ S_4 = 2r/3$	$\left(\frac{E_1r}{54}\right)(5\alpha_1\alpha_2+6\alpha_2\alpha_3+6\alpha_3\alpha_1)$	RPN
(110)	[110]	1,4,7,12	$\begin{aligned} S_8 &= S_{11} = 2r/9\\ S_7 &= S_{12} = 7r/18\\ r/2 \end{aligned}$	0	-

* Relative among the three symmetry directions of rolled strip. TD-transverse direction, RPN-rolling plane normal.

unit {112} area. To this quantity we multiply by a factor $(p'|S|/d=p'|S|\sqrt{6/a})$ as before, leading to the expression

$$\Delta N_{\rm BB} = p'|S| \left(\frac{\sqrt{6}}{a}\right) \left(\frac{\sigma}{2a^2\sqrt{6}}\right) = \frac{1}{4}Np'\sigma|S|.$$
(18)

Insertion of eqns. (16) and (18) into eqn. (1) then leads to

$$E = -\frac{1}{2}Nlp'\sigma\sum_{i}|S_{i}|f_{i}(\alpha_{1},\alpha_{2},\alpha_{3})$$
(19)

for the SRO case.

Finally, by combining the LRO and SRO expressions of eqns. (17) and (19), we obtain

$$E = -\frac{1}{2}E_1 \sum |S_i| f_i(\alpha_1, \alpha_2, \alpha_3), \qquad (20)$$

where $E_1 = Nlp'(p_0 s^2 + \sigma)$ as before. Equation (20) is the expression for the slip-induced anisotropy energy developed by $\{112\}\langle 111\rangle$ slip and based on NN interactions.

(c) Applications to rolling

As in the treatment of $\{110\}\langle 111\rangle$ slip in Part 2 above, eqn. (20) has been applied to rolling of (001)[$\overline{1}10$], (115)[$\overline{1}10$], (112)[$\overline{1}10$], (111)[$\overline{1}10$] and (110)[$\overline{1}10$] orientations. For the convenience of calculations, the appropriate parameters (similar to

Mater. Sci. Eng., 1 (1966) 77-90