

Fig. 6. Same as Fig. 5, except that emphasis is on next-nearest-neighbor pairs. (a) Undeformed state; all three $\langle 100\rangle$ NNN directions contain AA and BB pairs only. (b) to (d) Alternative arrangements after (112) [111] slip, showing AB pairs (double bars) induced in all three $\langle 100\rangle$ directions.

Since $\Delta N_{\text {BB }}$ occurs in [111], [111] and [111], we have from eqn. (1)

$$
\begin{align*}
\cos ^{2} \varphi & =\left(\cos ^{2} \varphi_{[111]}+\cos ^{2} \varphi_{[\overline{1} 11]}+\cos ^{2} \varphi_{[11 \overline{1}}\right) \\
& =-\frac{2}{3}\left(\alpha_{1} \alpha_{2}-\alpha_{2} \alpha_{3}+\alpha_{3} \alpha_{1}\right), \tag{15}
\end{align*}
$$

which means that the [111] slip direction is the effective direction of unlike pairs, which is a hard direction of magnetization for FeCo . In the general case, where the slip direction of slip system i has the direction cosines $d_{1 i}, d_{2 i}, d_{3 i}$,

$$
\begin{align*}
\cos ^{2} \varphi_{i}= & -2\left(d_{1 i} d_{2 i} \alpha_{1} \alpha_{2}+d_{2 i} d_{3 i} \alpha_{2} \alpha_{3}\right. \\
& \left.+d_{33} d_{1 i} \alpha_{3} \alpha_{1}\right) \\
\equiv & -2 f_{i}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) . \tag{16}
\end{align*}
$$

The insertion of eqns. (14) and (16) into eqn. (1) then leads to

$$
\begin{equation*}
E=-\frac{1}{2} N l p_{0} p^{\prime} s^{2} \sum_{i}\left|S_{i}\right| f_{i}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) . \tag{17}
\end{equation*}
$$

(b) Short-range order case

For the short-range order case, the two nearestneighbor bonds associated with each $\langle 111\rangle$ direction (in a unit cell) contain a total of $(1-\sigma) / 2 \mathrm{BB}$ pairs in the undeformed state (see Appendix). After slip, $\sigma=0$ for the $3\langle 111\rangle$ directions other than the slip direction. Hence the gain in BB pairs in each of these directions is $\sigma / 2$, or $\sigma / 2 a^{2} \sqrt{ } 6$ per

TABLE III: values of ε and d (referred to cubic axes) for the twelve $\{112\}\langle 111\rangle$ SLIP systems

$\begin{aligned} & \text { No. of } \\ & \text { slip } \\ & \text { system } \end{aligned}$	Slip plane	Slip direction	$2 \varepsilon_{x x}$	$2 \varepsilon_{y y}$	$2 \varepsilon_{z z}$	$4 \varepsilon_{y z}$	$4 \varepsilon_{z x}$	$4 \varepsilon_{x y}$	$3 d_{1} d_{2}$	$3 d_{2} d_{3}$	$3 d_{3} d_{1}$
1	(112)	111	S_{1}	S_{1}	$-2 S_{1}$	$-S_{1}$	$-S_{1}$	$2 S_{1}$	1	1	1
2	(12̄1)	111	S_{2}	$-2 S_{2}$	S_{2}	$-S_{2}$	$2 S_{2}$	$-S_{2}$	1	1	1
3	(211)	111	$-2 S_{3}$	S_{3}	S_{3}	$2 S_{3}$	$-S_{3}$	$-S_{3}$	1	1	1
4	(112)	111	S_{4}	S_{4}	$-2 S_{4}$	S_{4}	S_{4}	$2 S_{4}$	1	-1	-1
5	(121)	$11 \overline{1}$	$-S_{5}$	$2 S_{5}$	$-S_{5}$	$-S_{5}$	$2 S_{5}$	S_{5}	1	-1	-1
6	(211)	$11 \overline{1}$	$2 S_{6}$	$-S_{6}$	$-S_{6}$	$2 S_{6}$	$-S_{6}$	S_{6}	1	-1	-1
7	(112)	111	$-S_{7}$	$-S_{7}$	$2 S_{7}$	S_{7}	$-S_{7}$	$2 S_{7}$	-1	1	-1
8	(211)	$\overline{111}$	$-2 S_{8}$	S_{8}	S_{8}	$2 S_{8}$	S_{8}	S_{8}	-1	1	-1
	(12ī)	$\overline{1} 11$	$-S_{9}$	$2 S_{9}$	$-S_{9}$	S_{9}	$2 S_{9}$	$-S_{9}$	-1	1	-1
10	(211)	$1 \overline{17} 1$	$2 S_{10}$	$-S_{10}$	$-S_{10}$	$2 S_{10}$	S_{10}	$-S_{10}$	-1	-1	1
11	(121)	$1 \overline{1} 1$	S_{11}	$-2 S_{11}$	S_{11}	S_{11}	$2 S_{11}$	S_{11}	-1	-1	1
12	(112)	$1 \overline{1} 1$	$-S_{12}$	$-S_{12}$	$2 S_{12}$	$-S_{12}$	S_{12}	$2 S_{12}$	-1	-1	1

TABLE IV: SUMMARY OF RESULTS BASED ON $\{112\}\langle 111\rangle$ SLIP

Rolling plane	Rolling direction	Active slip systems	$\left\|S_{i}\right\|$	$E_{\text {NN }}$	$\begin{aligned} & \text { Easy* } \\ & \text { axis } \end{aligned}$
(001)	[110]	7,12	$r / 2$	$\left(\frac{E_{1} r}{6}\right) \alpha_{1} \alpha_{2}$	TD
(115)	[110]	4,7,8,11,12	$\left\|S_{4}\right\|=2 r / 27$	$\left(\frac{E_{1} r}{162}\right)\left(31 \alpha_{1} \alpha_{2}+2 \alpha_{2} \alpha_{3}+2 \alpha_{3} \alpha_{1}\right)$	TD
			$\begin{aligned} & \left\|S_{8}\right\|=\left\|S_{11}\right\|=6 r / 27 \\ & \left\|S_{7}\right\|=\left\|S_{12}\right\|=21 r / 54 \end{aligned}$		
(112)	[110]	4,7,8,11,12	$r / 3$	$\left(\frac{E_{1} r}{18}\right)\left(3 \alpha_{1} \alpha_{2}+\alpha_{2} \alpha_{3}+\alpha_{3} \alpha_{1}\right)$	RPN
(111)	[110]	4,7,8,11,12	$\left\|S_{4}\right\|=2 r / 3$	$\left(\frac{E_{1} r}{54}\right)\left(5 \alpha_{1} \alpha_{2}+6 \alpha_{2} \alpha_{3}+6 \alpha_{3} \alpha_{1}\right)$	RPN
			$\begin{aligned} & \left\|S_{8}\right\|=\left\|S_{11}\right\|=2 r / 9 \\ & \left\|S_{7}\right\|=\left\|S_{12}\right\|=7 r / 18 \end{aligned}$		
(110)	[110]	1,4,7,12	$r / 2$	0	-

* Relative among the three symmetry directions of rolled strip. TD-transverse direction, RPN-rolling plane normal.
unit $\{112\}$ area. To this quantity we multiply by a factor ($p^{\prime}|S| / d=p^{\prime}|S| \sqrt{6 / a}$) as before, leading to the expression
$\Delta N_{\mathrm{BB}}=p^{\prime}|S|\left(\frac{\sqrt{ } 6}{a}\right)\left(\frac{\sigma}{2 a^{2} \sqrt{ } 6}\right)=\frac{1}{4} N p^{\prime} \sigma|S|$.
Insertion of eqns. (16) and (18) into eqn. (1) then leads to

$$
\begin{equation*}
E=-\frac{1}{2} N l p^{\prime} \sigma \sum_{i}\left|S_{i}\right| f_{i}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \tag{19}
\end{equation*}
$$

for the SRO case.
Finally, by combining the LRO and SRO expressions of eqns. (17) and (19), we obtain

$$
\begin{equation*}
E=-\frac{1}{2} E_{1} \sum_{i}\left|S_{i}\right| f_{i}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right), \tag{20}
\end{equation*}
$$

where $E_{1}=N l p^{\prime}\left(p_{0} s^{2}+\sigma\right)$ as before. Equation (20) is the expression for the slip-induced anisotropy energy developed by $\{112\}\langle 111\rangle$ slip and based on NN interactions.
(c) Applications to rolling

As in the treatment of $\{110\}\langle 111\rangle$ slip in Part 2 above, eqn. (20) has been applied to rolling of (001) [110$]$, (115) [110], (112) [110], (111) [110] and (110) [110] orientations. For the convenience of calculations, the appropriate parameters (similar to

